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Abstract— There have been many attempts to unify the control 
and management of circuit and packet switched networks, but 
none have taken hold. In this paper we propose a simple way to 
unify both types of network using OpenFlow. The basic idea is 
that a simple flow abstraction fits well with both types of 
network, provides a common paradigm for control, and makes it 
easy to insert new functionality into the network. OpenFlow 
provides a common API to the underlying hardware, and allows 
all of the routing, control and management to be defined in 
software outside the datapath. 

Keywords- Computer networks; Internetworking; Optical 
communication equipment; Wide area networks; 

I.  INTRODUCTION  
Big networks are expensive to run and service providers are 
always looking for ways to reduce their capital and operational 
costs. One approach is to combine different specialized 
networks, reducing the number of technologies the operator 
needs expertise in, and reducing the number of boundaries 
between different types of networks. For example, many 
network operators have combined their separate voice and data 
networks to great effect. We call this “horizontal 
convergence” in which (typically) IP data networks replace 
specialized voice, video and control networks. 

This paper is about “vertical convergence” in which 
networks running at two layers are converged. Over the years, 
there has been much talk about how transport networks (built 
from optical and electronic circuit switches) could be 
subsumed by the packet-switched services that run over them. 
There are several ways to do it. One way is to use only packet 
switching, and emulate circuits [1] where fixed rate services 
are needed. Another way is to connect packet-switch routers 
with direct point-to-point optical WDM links, and remove 
transport layer switching altogether [2].  

We don’t believe optical circuit switching will (or should) 
be eliminated; on the contrary, we believe it offers significant 
advantages in the core of the network. First, optical switching 
is much more scalable; an optical circuit switch can switch 
much higher data rates, and consume much less power than an 
electronic packet switch. As a consequence, they are simpler, 
lower cost and more space efficient than an electronic packet 
switch. A useful rule of thumb is that an optical circuit switch 
consumes about 1/10th of the volume, 1/10th of the power and 
costs about 1/10th the price as an electronic packet switch with 
the same capacity. On the other hand, a circuit switch doesn’t 
have the statistical multiplexing benefits of a packet switch. 

This matters little at the core of the network where flows 
destined to the same next hop are naturally bundled, and their 
aggregate is relatively smooth. On the other hand, closer to the 
edge of the network packet switching offers big benefits due to 
statistical multiplexing and more fine-grain control. 

We therefore seek a way to reap the benefits of both circuit 
switching and packet switching, by allowing a network 
operator to decide the correct mix of technologies. We reason 
that if both types of switch are controlled and used the same 
way, then it gives the operator maximum flexibility to design 
their own network. In particular, in this paper, we propose 
how circuit and packet switched networks can be controlled 
via the OpenFlow protocol. 

IP and transport networks today are separate. In a 
typical service provider’s organization, two networks are 
operated and managed by separate groups. For example, 
operators such as AT&T and Verizon run separate IP and 
SONET/WDM networks leading to lots of duplication. Fault 
tolerance is a prime example: The underlying transport 
network often operates with 1:1 protection, while the IP 
network running on top operates at less than 30% link 
utilization in preparation for unexpected traffic surges and link 
failures.  

IP and transport networks do not interact. IP routers are 
typically connected via wide-area pseudo-static circuits. IP 
networks (L3) cannot benefit from dynamic switching in 
L1/L0 networks, and instead regard the links as dumb pipes. If 
an operator could dynamically create and destroy light paths, 
their networks could be more cost efficient, and use less 
energy.   

We are not the first to suggest a unified way to control 
packet and circuit switches. Most notably GMPLS [3] and the 
OIF [4] have experimented with alternative approaches. In 
Section VI we explain why we think these approaches are too 
complex and have not taken off. Sections II and III provide 
background on OpenFlow architecture [5], describing the 
separation of data and control planes. In Section IV we 
explore how the flow abstraction can unify packet and circuit 
networks. Section V describes prototype unified OpenFlow 
networks we are building in collaboration with circuit switch 
vendors. 

II. OPENFLOW ARCHITECTURE 
In today’s packet networks, a router/switch is both the 

control element which makes control decisions on traffic 
routing, as well as the forwarding element responsible for 
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traffic forwarding, and both these functionalities are tightly 
linked (Fig. 1a). Housing control and data functions in the 
same box makes routers complex and fragile, quite unlike the 
streamlined routers envisaged by the Internet pioneers [6]. 
Today, a backbone router runs millions of lines of source 
code, and a plethora of features in software and hardware.  

Transport networks are similar. While traditionally they 
have had a separation between a circuit switched data plane 
and a packet switched control plane, this control could reside 
within the box (Fig. 1b) or outside the box with proprietary 
interfaces (Fig. 1c). Additionally, out-of-box-control may not 
even be a distributed control plane, but more likely an Element 
Management System (EMS) / Network Management System 
(NMS) hierarchy. Those that desire the former are headed 
towards the same problems seen in packet switched networks 
today. 

OpenFlow advocates a clean separation between the data 
plane and the control plane in packet or circuit networks (Fig. 
2). Because the data plane is typically implemented in 
hardware, OpenFlow provides the control plane with a 
common hardware abstraction. A network (for example an 
autonomous system) is managed by a network-wide operating 
system (e.g. NOX [7]), running on multiple software 
controllers (Fig. 3), that controls the data plane using the 
OpenFlow protocol. 

OpenFlow abstracts each data plane switch as a flow-table. 
The control plane makes decisions as to how each flow is 
forwarded (reactively as new flows start, or proactively in 
advance), then caches its decision in the data plane’s flow 
tables. For example, the control plane might decide to route all 
of the http traffic destined to Europe along the same path, and 
so would add a flow-entry in the flow-table of each switch 
along the path. OpenFlow allows various types of actions on 
flows (e.g. forward, multicast, drop, tunnel), as outlined in the 
current specification [8]. The network-wide operating system 
decides how every flow is routed, which ones are admitted, 
where they are replicated, and (optionally) the data-rate they 
receive. And so now the control plane determines access 
control, routing, multicast, load-balancing and so on. Moving 
the decision making out of the data plane means the data plane 
is oblivious to how, say, routing decisions are made, and a 
new routing protocol can be added in software. We say that 
the network is now “software-defined”.   

The consequences are quite far-reaching. By providing a 
standardized open interface to the data plane, innovation can 
take place at a much faster pace than today. Network owners 
and operators (as well as vendors, researchers and 3rd party 
developers) can all add new functionality and services to the 
network. New functionality and services are added by creating 
network services on the network operating system or the 
controller using another standardized API (Fig 2). This helps 
the network to evolve more rapidly (e.g. to try out new access 
control methods, or to provide alternative mobility managers). 
And it potentially paves the way to greater diversity of 
solutions because of a much larger pool of developers. 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An OpenFlow network is easy to virtualize. In [9] we 

describe how an OpenFlow network can be “sliced” into 
several independent and isolated networks, each with its own 
controller. The slices can be used to try new versions of 
features (evolution) or to try radically new architectures, 
including new routing protocols, address formats and so on 
(diversity). 

A number of vendors have created prototype 
implementations of OpenFlow on Ethernet switches, IP 
routers, WiFi access points and a WiMAX basestation. 
Stanford is deploying OpenFlow enabled networks in its CS 
and EE buildings that support both production and 
experimental traffic, and we are working with seven other 
campuses to help deploy OpenFlow in their network too.  

III. THE FLOW ABSTRACTION 
OpenFlow abstracts the data plane as a flow-table. A flow 

can be defined as any combination of L2, L3 and L4 packet 
headers as well as L1/L0 circuit flows (Fig. 4).  

 
Fig. 1.  Different architectures in today’s packet and circuit networks 

 
Fig. 2.  OpenFlow Network Architecture. 

 
Fig. 3.  Control Plane Architectures 



3 
 

 
 
 
 
 
 
 
 
Incoming packets are matched against the flow definitions; 

if there is a match, a set of actions are performed, and statistics 
kept. Packets that don’t match any flow entry are (typically) 
encapsulated and sent to the controller. The controller can 
decide how to process the packet, and then (optionally) cache 
its decision in the data plane so future packets in the flow are 
processed the same way. Thus while each packet is switched 
individually, the flow is the basic unit of manipulation within 
the switch. A management application or a provider could also 
proactively create a set of flow table entries, in anticipation of 
some traffic flows, in order to avoid setup delays. OpenFlow is 
backward compatible with legacy networks; an OpenFlow 
packet switch could behave as an Ethernet switch, IP router or 
standalone L4 firewall by defining flows with their respective 
headers. OpenFlow can be deployed in existing networks, 
allowing service providers to gradually gain confidence in it. 
In fact on the same OpenFlow network, a network operator 
can support standard Ethernet and IP production traffic as well 
as experimental flows that are defined as combinations of 
packet headers at different layers.  

In [10] we showed that cross-connect tables in transport 
NEs can also be regarded as OpenFlow flow tables. Flows can 
be defined as circuit flows using L1 time-slot switching based 
on SONET/SDH and Virtual Concatenation (VCGs) or L0 
wavelength or fiber switching. Likewise, they could be 
defined across packet and circuit layers as well. Thus the 
OpenFlow architecture allows for 1) a flexible definition of 
what constitutes a flow, at what layer and switching 
granularity, and 2) the definition can be changed dynamically, 
over time or in different parts of the network; for example, to 
aggregate flows as they move from the edge to the core of the 
Internet. 

IV. 4BOPENFLOW UNIFIED ARCHITECTURE  
In this section we describe how the OpenFlow architecture 

can unify packet and circuit networks in different network 
planes.  

A. 8BData Plane Unification 
Once we consider the flow abstraction across various 

underlying switching technologies – both packet (L2/L3/L4) 
and circuit (L1/L0) – we effectively blur the distinction 
between packets and circuits and regard them both simply as 
flows of different granularity in a flow-switched network. 

Fig. 5 shows two OpenFlow switches: an OpenFlow packet 
switch on the left, and on the right, a transport NE that 
supports both packet and circuit interfaces and switch fabrics. 

We do not show the controller here but assume that the 
switches speak the OpenFlow protocol with the controller. The 
switches also maintain flow tables in hardware – Rule, Action, 
Statistics (R, A, S) flow-table entries for the packet switching 
fabrics, and bidirectional cross-connect entries (IN-OUT) with 
associated actions for the circuit switching fabric. While this 
example shows a time-slot based TDM digital cross-connect, 
the concept applies equally well to wavelength based WDM 
optical cross-connects (ROADMs & OXCs). 

The packet switch identifies two separate flows via a) a 
destination IP address (11.12.0.0) and b) http traffic (TCP port 
80) destined for another IP address (11.13.0.0). The Action 
applied to packets belonging to the flows is to add separate 
VLAN tags to the two flows (ids 2 and 7) and forward the 
packets out of ports 1 and 2 respectively, both of which are 
connected to the packet interfaces of the NE. In the latter, the 
packets from the two flows match on flow entries defined on 
the VLAN tags. The Action applied here is to forward out of 
different virtual ports, VCGs 3 and 5, together with the 
designated encapsulation/adaptation specified in the flow 
action (not shown). 

On the circuit side of the NE, VCG-3 has a collective 
bandwidth of 450 Mbps. This is represented by flow entries 
comprised of the virtual concatenation of 3 TDM signals (VC-
4s) together with their physical ports and starting time-slots. 
On the other hand, VCG-5 cross-connects to a single 10 Gbps 
STS-192 signal out of port3 on the first time-slot. Thus, with 
the flow abstraction, the OpenFlow controller can flexibly 
define flows and assign different bandwidths and routes to 
those flows, simply by the addition of flow table entries in 
switches with different switching technologies and belonging 
to different switching layers, thereby leading to datapath 
unification. Furthermore, by not requiring the switches to host 
complex distributed control plane functionality, the switches 
benefit from increased robustness and  decreased cost while 
being able to accommodate and benefit from different 
switching technologies, both packet and circuit, where 
appropriate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Fig. 4.  OpenFlow Switch Flow Table Entry 

 
Fig. 5.  OpenFlow Datapath Unification 
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B. 9BControl Plane Unification  
In Fig. 1, we had shown the significant disparity that exists 

in IP and Transport network control frameworks. Such 
disparity makes automated interworking between packet and 
circuit networks hard, if not impossible. The functions of 
routing, signaling and recovery across multiple layers and 
different architectures become significantly complex, so much 
so, that it is actually preferred to keep the networks separate 
and operated independently by different divisions, even within 
the same service provider organization. However, with 
OpenFlow, a single framework can be used to control any 
combination of OpenFlow enabled packet switches, circuit 
switches, as well as switches which have both packet and 
circuit interfaces and switch-fabrics (Fig. 6). Here’s how – 

1) By introducing the separation of data and control in the 
packet network together with the treatment of packets as 
flows, the single framework in Fig.6 becomes possible as 
opposed to the ones in Fig. 1, and 2) the OpenFlow protocol 
[8] has features for both circuit and packet switching 
hardware. It thereby allows the use of a single, standardized 
protocol for controlling the underlying heterogeneous 
hardware infrastructure, by the same controller. Another 
advantage of standardizing the interface is that the same 
controller can now be used to interface with many more 
switches, irrespective of the switching type and completely 
agnostic to the switch vendor. This has the direct effect of 
eliminating islands of vendor equipment (known as vendor 
domains in transport networks) that do not interoperate with 
other islands without manual control, and only speak to 
proprietary management systems. 

It is also worth noting that such a unified control plane is 
greatly simplified compared to a fully distributed control plane 
such as in IP/MPLS and GMPLS networks.  With a fully-
distributed control plane in TE networks, link-state routing 
protocols disseminate link state information as well as 
resource availability information. This is required in such 
cases as each switch could make routing decisions and thus 
needs all the state information in the network. In multi-layer, 
multi-vendor-domain scenarios, distributed signaling becomes 
complex when going across packet and circuit networks, while 
the increased load on fragile link-state distributed routing 
protocols could result in increased network instability.  
 

 
 
 
 
 
 
 
 
 
 
 
 

But in OpenFlow, only the controller makes these decisions, 
the information for which is gleaned via the OpenFlow 
protocol directly from the switches. Thus by eliminating 
distributed signaling and distributed routing protocols within a 
controllers domain, the unified architecture benefits from a 
simple, robust,  unified, automated control plane without 
layers and layers of complex fragile protocols. 

Furthermore, when large packet and circuit network are 
planned, operated and managed independently, several 
management issues  come up – careful planning and co-
ordination has to take place between the groups that 
independently manage the networks, to ensure that something 
unexpected (like failures) or known activities (like 
maintenance) in one network does not effect the performance 
of the other. Expectedly, operating two networks and 
maintaining two groups that use completely different tools for 
managing the networks (SNMP for IP and TL-1 based 
proprietary NMS/OSS in Transport), result in considerable 
opex burden. We believe that this separation of management 
planes is a key hindrance to tighter integration of IP and 
Transport networks. However OpenFlow could help in this 
regard, as 1) the OpenFlow controller maintains a one-to-one 
relationship with each switch within its domain just like 
management systems in IP and Transport network do and 2) 
the OpenFlow protocol has features which allow the controller 
to perform management functions such as configure switches, 
query statistics, receive alarms, monitor performance etc. 

C. Virtualization Plane Unification 
A key component of the OpenFlow architecture is the flow 

level virtualization of the network and its resources. 
Virtualization has two key ingredients – programmability and 
isolation. The former is provided by the OpenFlow API itself, 
where clients can program the switches by flexibly defining 
flows according to their needs and inserting them into the flow 
tables. The latter is provided in the OpenFlow architecture by 
virtualizing the API itself with a thin layer of software which 
we call the FlowVisor. 
     The FlowVisor [9] is housed outside the switch leaving 
both the data plane as well as the controllers unmodified. The 
FlowVisor is transparent to the switches as well as the 
controllers and it enforces traffic isolation by monitoring and 
re-writing OpenFlow protocol messages. The switches think 
that they are talking to a single controller, while each 
controller thinks that it is controlling its own set of switches.      

With the power of virtualization, OpenFlow can take into 
account key needs of the service provider – Transport network 
operators like to have precise manual control over the way 
traffic is routed over their network rather than give up that 
control to a software control plane irrespective of how 
intelligent that control plane may be. While they would like to 
respond faster and provide more dynamic services to meet 
their client needs, they feel that the resources they manage are 
too expensive, too valuable, and can cause far too much 
damage or loss of revenue if handled incorrectly.  

 

 
 

Fig. 6.  OpenFlow Unified Architecture 
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    OpenFlow solves this problem by partitioning the network 
resources between multiple clients and isolating them, thereby 
ensuring that no client can intentionally or unintentionally 
disrupt service for any other client. The key is that in the 
unified architecture, OpenFlow enabled virtualization allows 
the transport service provider to retain control over the 
transport network, while allowing clients (such as an ISP) to 
use whatever automated intelligent control algorithms they 
may desire in their isolated slice of the network (Fig. 7). 

We can further visualize that the client network (the ISP) 
can have its own virtualized network via a FlowVisor which is 
under the control of the ISP.  The transport network resources 
provided to the ISP by the transport service provider can 
further be virtualized by the ISP for its own needs. Note that 
both FlowVisor’s are capable of virtualizing either packet or 
circuit resources, or both. For example, under one 
construction, the transport service provider could virtualize 
just the circuit resources, while the ISP could virtualize both 
its own packet resources as well as the circuit ones it gets in its 
slice of the transport network– the OpenFlow architecture 
thereby allows for a hierarchy of FlowVisors. 

V.  5BPROTOTYPE NETWORK AND DEMONSTRATION 
The key purpose of the OpenFlow architecture is to enable 

innovations and this paper shows how OpenFlow can enable 
innovations at the intersection of packet and circuit networks. 
We first describe an OpenFlow unified packet and circuit 
network testbed that we are building in our lab. We also 
present a couple of examples of new capabilities that are made 
much easier with OpenFlow.  

Prototype Network: The packet switches in our lab testbed 
are based on the NetFPGA platform [11], a programmable 
hardware platform that allows us to build new packet 
switching capabilities in hardware. These packet switches are 
interconnected via transport NEs and tens of kilometers of 
optical fiber, thereby emulating a wide-area network. The NEs 
comprise of line-terminating WDM equipment (transceivers 
and optical mux/demux) as well as switching elements (cross-
connects) with different switching technologies - optical 
wavelength switches, and modular electronic switches with 
packet and TDM switching fabrics. All the switches (packet 

and circuit) have the OpenFlow feature built in and are under 
the control of a single controller running NOX [7]. Finally 
hosts are connected to the packet interfaces and traffic is 
transmitted end-to-end in the testbed under the control of 
network control and management applications running on the 
controller.  

Example Application – Variable Bandwidth Packet Links: 
Today’s IP networks have static link costs, where “costs” here 
refers to the weightage assigned to a link as part of a shortest-
path computation.  However IP traffic is quite dynamic with 
constantly changing demand that frequently results in 
congestion on links along certain routes in the network, while 
other routes remain underutilized. Congestion could be 
alleviated if routers could dynamically change link costs and 
trigger re-computation of Shortest Path Trees (SPT), with the 
net result that some flows take other routes to their destination 
and thereby relieve load on the congested link. However, re-
computation of the SPT needs to happen in every single router 
within the routing domain, which is potentially disruptive to 
all the flows in the network. Furthermore, there exists the 
possibility of routing loops while the routers converge, and 
more importantly, route flaps, where the SPT re-calculation 
and subsequent re-routing causes congestion somewhere else 
in the network, which in-turn causes another SPT computation 
and traffic ends up oscillating between paths. Avoiding 
network oscillations is the fundamental reason why IGP link 
metrics have static costs today as oscillations are far more 
undesirable than poor traffic load efficiency. 

However, in the OpenFlow unified architecture, long-lived 
network congestion can be alleviated by simply increasing the 
bandwidth along a packet link when needed, via dynamic 
circuit switching. In our testbed, we will create packet link 
congestion by dialing up the traffic between end-systems. 
When this traffic overwhelms the packet link bandwidth 
allocated by the underlying physical layer, the resultant 
congestion in the packet link may result in the packet switch 
output queues to overflow. When the queue length crosses a 
pre-determined threshold set beforehand by the controller, the 
switch asynchronously notifies the controller of the 
congestion. A simple congestion control software application 
running on top of the NOX controller (see Fig. 2) could then 
decide to temporarily turn ‘on’ spare interfaces on the packet 
switches, establish new circuit flows between them on the 
NEs, and re-direct some of the packet flows causing 
congestion (using L3 or L4 hashes) onto the spare interfaces, 
thereby relieving congestion. Later the circuit resources could 
be re-directed by the application elsewhere, allowing them to 
be shared amongst several packet switches. Developing such 
applications is made easy by NOX and the two APIs. 

Importantly, in sharp contrast to today’s IP networks, none 
of these changes are disruptive to existing packet flows 
elsewhere in the network. Since the switches don’t run a 
distributed routing protocol, there is no need for convergence 
and no possibility for route flaps. The controller makes the 
decision of changing a link bandwidth, and it only affects the 

 
Fig. 7.  OpenFlow Virtualization via FlowVisor 
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flows along the link and nowhere else. Variable bandwidth 
packet links could allow service providers to run their links at 
higher utilization and buttress bandwidth when needed, instead 
of over-provisioning the network (4X to 10X) in order to 
provide customer satisfaction in the face of uncertainty (traffic 
surges, link failures etc.). 

Example Application –Dynamic Automated Optical Bypass: 
In some situations, the service provider could establish new 
links between packet switches, where one did not exist before, 
via the dynamic circuits in the underlying layer. Again this is 
highly undesirable (and not done) in today’s IP networks 
because such links would have to show up in the IP topology, 
leading to the need for re-convergence.  Dynamically setting 
up and tearing down new links in the IP topology could lead to 
the same problems as changing link costs. But as before, 
OpenFlow does not suffer from these drawbacks and could 
easily accomplish this task as a means of traffic engineering 
triggered by a TE application running on the controller, or be 
manually driven by the network operator. For example, if 
many of the flows through intermediate packet switches are 
transit flows, the TE application could recognize that, and 
create the new circuit dynamically between the end packet 
switches by bypassing the intermediate packet switches, 
thereby reducing their load as well as overall flow latency. We 
are prototyping these capabilities on our testbed and will 
demonstrate them over the next year. 

VI.  6BGMPLS FAILINGS 
Generalized Multi-Protocol Label Switching (GMPLS) was 

designed as an extension to MPLS and was intended to offer 
an intelligent and automated unified control plane (UCP) for a 
variety of networking technologies – both packet and circuit. 
GMPLS has undergone a lengthy standardization process 
within the IETF (since 2000) and variations of the protocol 
suite have also gone through standardization at the ITU and 
the OIF. However, as of this writing, while GMPLS has 
existed in some form or another for the entire decade, it has 
yet to see a significant deployment in commercial networks. 

GMPLS protocols could be used as a control plane for 
transport networks, but it seems overly complex and fragile to 
make sense as a UCP. First, it assumes an underlying, existing 
IP/MPLS network for control traffic (with a link-state 
routing). Second, and for us most importantly, GMPLS misses 
the opportunity to introduce a path for continued evolution of 
the UCP. Understandably, in its first incarnation, there are 
many issues GMPLS does not address well (for example, the 
conservative way in which network operators manage and 
partition their networks). By defining how “everything” works 
up-front in a homogeneous protocol suite, GMPLS leaves little 
room for innovation to take place in the field, by the network 
operators. Whether or not OpenFlow is the “right” answer, we 
do believe that it is important for a UCP to be easily 
virtualized, so that the network control layer can be sliced to 
allow continued evolution as experience is gained in the field.  

VII. 7BCONCLUSION 
In this paper we describe how OpenFlow could be used to 

unify (and continually improve) the control of packet and 
circuit networks. We are prototyping OpenFlow on circuit and 
packet platforms in collaboration with vendors and plan to 
demonstrate new dynamic circuit switching capabilities that 
the packet networks can exploit for congestion avoidance and 
agile traffic engineering. But ours is a small effort, and will 
only scratch the surface with a handful of examples to show 
how a UCP can bring together both types of network. We 
believe there are many other improvements to be made by 
other researchers. 
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APPENDIX A 
    As a proof of concept, we built a simple OpenFlow enabled 
packet and circuit network using carrier-class Ciena 
CoreDirector CI (CD) switches, and an application that sets 
up, modifies and tears-down L1/L2 flows on–demand and 
dynamically responds to network congestion. We 
demonstrated the network and application at SC09. Other 
network applications that can exploit the common API and 
OpenFlow enabled packet and circuit switches include 
integrated routing and traffic engineering, integrated network 
recovery, QoS, virtualization and more. In this section we 
report on our proof of concept network, application, and the 
SC09 demonstration.  
   The demonstration network was housed in three exhibit 
booths as shown in Fig. 8a.  Each booth hosted a single CD 
supporting both layer 2 (GE) interfaces with a packet 
switching fabric, as well as layer 1 (SONET/SDH) interfaces 
with a TDM switching fabric.  The CDs natively support the 
OpenFlow protocol for their packet and circuit switching 
fabrics, and are thereby controlled by an external controller, 
running NOX [7] as the network OS, over an out-of-band 
Ethernet network. Video clients and servers were connected to 
the GE client interfaces of the CDs, which were themselves 

http://www.cisco.com/en/US/solutions/ns341/ns525/ns537/ipodwdm_announcement.html
http://www.cisco.com/en/US/solutions/ns341/ns525/ns537/ipodwdm_announcement.html
http://www.oiforum.com/public/impagreements.html
http://www.openflowswitch.org/
http://www.netfpga.org/
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connected via OC-48 SONET/SDH links. The three CDs 
together form a small demo network, emulating a real scenario 
in the Internet today – end user clients requesting services 
(web, e-mail, video etc.) from remote servers, with the 
requests going out as IP/Ethernet packets, encountering packet 
switches such as Ethernet switches and IP routers, before 
getting bundled into circuits for transport over the long-haul.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    At the start of the demonstration, the CDs establish 
connectivity with the OpenFlow controller. The controller 
identifies the switches and their features through the 
OpenFlow interface and builds a switch/topology database.  It 
then pre-provisions a SONET/SDH Virtual Concatenation 
Group (VCG) in the CDs which have GE interfaces. The 
VCGs serve as virtual ports interfacing Ethernet packet flows 
and SONET/SDH circuit flows. After this initial startup phase, 
one of the video clients makes a request for a video from a 
remote streaming video server. The request is initially 
redirected to the OpenFlow controller, which responds by 
directing CDs #1 and #2 to create an internal VLAN 
corresponding to the client port (in CD #1) and the video 
server port (in CD #2), and map the VLAN into the VCG 
virtual ports. The controller then provisions SONET signals 
and maps them into the same VCG, thereby enabling the 
packet flow to be transported over the circuit. All subsequent 

packets (in both directions) for this client-server pair match 
the existing flow definitions and get directly forwarded in 
hardware. As video data is received from the server, the 
packets are tagged with the internal VLAN id and mapped to 
the VCG.  At the client side, the packets received from the 
VCG are switched to the client port based on the VLAN tag, 
which is then stripped off before the packets are forwarded to 
the client PCs, where the video is displayed on the screen. A 
GUI (shown in Fig. 9) was created that shows network state in 
real-time. Packet flows are shown in red and circuit flows in 
blue.  
    Initially, the cumulative data-rate of two video streams is 
less that the bandwidth of the STS-1(50Mbps) circuit flow 
they are multiplexed into (Fig. 9a), and the videos play 
smoothly on the client PC displays. However, when a third 
video stream is multiplexed into the same circuit, the 
bandwidth is exceeded, packets start getting dropped, 
congestion develops in the network and the video displays 
stall (Fig. 9b). However the congestion-control app running in 
the controller monitors network performance by acquiring 
switch port and flow statistics. It becomes aware of the packet 
drops, makes sure that the congestion is due to long-lived 
flows, and then responds by increasing the circuit bandwidth 
from 50 to 200 Mbps. It achieves this by adding more TDM 
signals to the VCG, thereby relieving congestion and restoring 
the video streams which start displaying smoothly again (Fig. 
9c).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8(a) Demonstration Network at SC09 

 

 
Fig. 8(b) Demo setup at Ciena booth 

(a) 

(b) 
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Fig. 9. OpenFlow GUI displaying real-time network state 
 
    Thus far, everything has happened with automated control 
without requiring any manual intervention. However at this 
point, if the network operator desires (for reasons such as load 
balancing, path diversity etc.), he can override the decision 
made by the app, by redirecting the individual circuit flows 
that make up the VCG along different paths in the network. 
This can be done by simply using a mouse to drag a circuit 
flow in the GUI from one path to another. Behind the scenes, 
the GUI interfaces with the controller and informs the app of 
the flow-drag. The latter assigns free time-slots along the new 
path and sends the appropriate commands to the switches, in 
essence performing a make-before-break operation (Fig. 4d) 
which is hitless to the video streams being transported, due to 
the use of SONET LCAS (Link Capacity Adjustment Scheme) 
technology. Finally, to end the demo, the app detects the end 
of the video streams and gracefully tears down the packet and 
circuit flows.  

APPENDIX B 
We have also demonstrated OpenFlow unified control in our 
lab testbed (Figs 10a & 10b) with the help of OpenFlow 
enabled packet switches based on the NetFPGA platform, and 
an OpenFlow enabled optical switch based on a Wavelength 
Selective Switch (WSS) granted by Fujitsu.  
        The NetFPGA is a programmable hardware platform that 
allows researchers to implement electronic packet switching 
functionality in hardware. It is a PCI card that consists of a 

Xilinx FPGA and 4 GE ports, and can be easily installed in 
any PCI slot in a host computer (Fig. 10c). The FPGA can be 
programmed to behave as a simple Ethernet switch or an IP 
router that switches packets between the 4 GE ports. But more 
importantly, it allows building new packet processing 
functionality in hardware, so networking researchers can try 
out their ideas and not be limited to functionality provided in 
commercial packet switching equipment. In our testbed, an 
OpenFlow packet switch is implemented in the NetFPGA, 
which switches flows defined on a subset of the 10-tuple 
shown in Fig. 4. The flow definition is inserted in the switch’s 
hardware flow table, by the controller via the OpenFlow 
protocol [8].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      The WSS is an all-optical lambda switch in a 1X9 
configuration. It has the ability to independently switch any of 
40 incoming wavelengths at the single input port, to any of the 
9 output ports (Fig 10d). The incoming wavelengths (100 GHz 
spaced ITU DWDM lambdas) are demultiplexed and directed 
to their respective MEMS mirrors, which can be rotated to 
direct their wavelength to any of the 9 output ports, where they 
are multiplexed back into the outgoing fiber. In our setup we 
used the WSS bi-directionally, such that one of the 9 output 

(c) 

(d) 

 
Fig. 10(a) Testbed and components 

 
Fig. 10(b) Schematic of the testbed 
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ports actually served as an input port for a certain wavelength 
(λ2). The mirrors are controlled with a voltage driver which is 
sent commands over RS232 from a PC. In turn the PC 
interacts with the OpenFlow controller which directs the 
provisioning of cross-connections via the circuit switching 
features of the OpenFlow protocol [8]. Together the PC, driver 
and the WSS can be regarded as an OpenFlow enabled circuit 
switch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       One of the four GE ports on each packet switch was 
connected to an electrical-to-optical converter from TrendNet 
(GE to SFP). We used DWDM SFP 2.5 Gbps transceiver 
modules in the converter which transmitted wavelengths of 
1553.3 nm and 1554.1 nm respectively. These wavelengths 
traveling in opposite directions were multiplexed at the 
output/input of the first packet switch (NF1) by an AWG, 
transported through 25 kms of SM fiber, and then 
demultiplexed by the WSS before the input/output of the 
second packet switch (NF2). Together the OpenFlow packet 
and circuit switches form the underlying switching hardware 
that switch at different granularities (packet and lambda) and 
are controlled by an external unified control plane (compare 
Figs. 6 and 10b). 
    We connected client and video server PCs (end-hosts) to the 
packet switches via GE, and used Helix DNA as the video 
streaming server and Real Player as the client application. A 
video request is made by the client application to the client 

PC’s TCP/IP stack (in the host OS), by providing the server’s 
IP address, the L4 port it is listening on, as well as the video 
filename. The client OS initially does not have knowledge of 
the MAC address corresponding to the server’s IP. It therefore 
generates an ARP request which is received by NF1 and is 
processed as the first packet of a new flow. Since the packet 
doesn’t match any flow entries in NF1, it gets forwarded to the 
OpenFlow controller. The controller makes the decision to 
create the circuit by using the OpenFlow protocol to make the 
bidirectional wavelength cross-connection in the WSS, 
thereby bringing up the Ethernet link between NF1 and NF2. 
It then inserts flow table entries in the latter, to broadcast the 
ARP request to all interfaces other than the one which 
received the packet. This results in the ARP request reaching 
the server PC via the WSS and NF2. The server PC’s OS 
sends the ARP reply, following which TCP handshaking takes 
place and a L4 connection is created, over which the video 
request is made. Finally, the server streams the video data 
packets over UDP, which are transported over the same 
bidirectional circuit created by the controller, and are received 
and displayed by the client. 
    We plan to continue development of the protocol, addition 
of OpenFlow to carrier class packet and circuit switches, and 
development of new network applications that can exploit the 
new capabilities. 
 

 
Fig. 10(c) NetFPGA platform 

 
Fig. 10(d) Schematic of Wavelength Selective Switch 
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