
Unifying Packet and Circuit Switched Networks with
OpenFlow

Saurav Das, Guru Parulkar, Nick McKeown

Stanford University

OPENFLOW-TR-2009-4

Abstract:

There have been many attempts to unify the control and management of circuit and packet

switched networks, but none have taken hold. In this paper we propose a simple way to unify

both types of network using OpenFlow. The basic idea is that a simple flow abstraction

fits well with both types of network, provides a common paradigm for control, and makes it

easy to insert new functionality into the network. OpenFlow provides a common API to the

underlying hardware, and allows all of the routing, control and management to be defined

in software outside the datapath. We discuss our motivation, ideas and goals and report on

a proof-of-concept OpenFlow enabled packet and circuit network recently demonstrated at

SuperComputing 09.

December 7, 2009

Available at http://OpenFlowSwitch.org/downloads/technicalreports/openflow-tr-2009-4-unification.pdf

http://OpenFlowSwitch.org/downloads/technicalreports/openflow-tr-2009-4-unification.pdf

1

Unifying Packet and Circuit Switched Networks

Saurav Das, Guru Parulkar, Nick McKeown
Department of Electrical Engineering, Stanford University

Abstract— There have been many attempts to unify the control
and management of circuit and packet switched networks, but
none have taken hold. In this paper we propose a simple way to
unify both types of network using OpenFlow. The basic idea is
that a simple flow abstraction fits well with both types of
network, provides a common paradigm for control, and makes it
easy to insert new functionality into the network. OpenFlow
provides a common API to the underlying hardware, and allows
all of the routing, control and management to be defined in
software outside the datapath.

Keywords- Computer networks; Internetworking; Optical
communication equipment; Wide area networks;

I. INTRODUCTION
Big networks are expensive to run and service providers are
always looking for ways to reduce their capital and operational
costs. One approach is to combine different specialized
networks, reducing the number of technologies the operator
needs expertise in, and reducing the number of boundaries
between different types of networks. For example, many
network operators have combined their separate voice and data
networks to great effect. We call this “horizontal
convergence” in which (typically) IP data networks replace
specialized voice, video and control networks.

This paper is about “vertical convergence” in which
networks running at two layers are converged. Over the years,
there has been much talk about how transport networks (built
from optical and electronic circuit switches) could be
subsumed by the packet-switched services that run over them.
There are several ways to do it. One way is to use only packet
switching, and emulate circuits [1] where fixed rate services
are needed. Another way is to connect packet-switch routers
with direct point-to-point optical WDM links, and remove
transport layer switching altogether [2].

We don’t believe optical circuit switching will (or should)
be eliminated; on the contrary, we believe it offers significant
advantages in the core of the network. First, optical switching
is much more scalable; an optical circuit switch can switch
much higher data rates, and consume much less power than an
electronic packet switch. As a consequence, they are simpler,
lower cost and more space efficient than an electronic packet
switch. A useful rule of thumb is that an optical circuit switch
consumes about 1/10th of the volume, 1/10th of the power and
costs about 1/10th the price as an electronic packet switch with
the same capacity. On the other hand, a circuit switch doesn’t
have the statistical multiplexing benefits of a packet switch.

This matters little at the core of the network where flows
destined to the same next hop are naturally bundled, and their
aggregate is relatively smooth. On the other hand, closer to the
edge of the network packet switching offers big benefits due to
statistical multiplexing and more fine-grain control.

We therefore seek a way to reap the benefits of both circuit
switching and packet switching, by allowing a network
operator to decide the correct mix of technologies. We reason
that if both types of switch are controlled and used the same
way, then it gives the operator maximum flexibility to design
their own network. In particular, in this paper, we propose
how circuit and packet switched networks can be controlled
via the OpenFlow protocol.

IP and transport networks today are separate. In a
typical service provider’s organization, two networks are
operated and managed by separate groups. For example,
operators such as AT&T and Verizon run separate IP and
SONET/WDM networks leading to lots of duplication. Fault
tolerance is a prime example: The underlying transport
network often operates with 1:1 protection, while the IP
network running on top operates at less than 30% link
utilization in preparation for unexpected traffic surges and link
failures.

IP and transport networks do not interact. IP routers are
typically connected via wide-area pseudo-static circuits. IP
networks (L3) cannot benefit from dynamic switching in
L1/L0 networks, and instead regard the links as dumb pipes. If
an operator could dynamically create and destroy light paths,
their networks could be more cost efficient, and use less
energy.

We are not the first to suggest a unified way to control
packet and circuit switches. Most notably GMPLS [3] and the
OIF [4] have experimented with alternative approaches. In
Section VI we explain why we think these approaches are too
complex and have not taken off. Sections II and III provide
background on OpenFlow architecture [5], describing the
separation of data and control planes. In Section IV we
explore how the flow abstraction can unify packet and circuit
networks. Section V describes prototype unified OpenFlow
networks we are building in collaboration with circuit switch
vendors.

II. OPENFLOW ARCHITECTURE
In today’s packet networks, a router/switch is both the

control element which makes control decisions on traffic
routing, as well as the forwarding element responsible for

This work was supported by the Stanford University Clean Slate Research
Program

2

traffic forwarding, and both these functionalities are tightly
linked (Fig. 1a). Housing control and data functions in the
same box makes routers complex and fragile, quite unlike the
streamlined routers envisaged by the Internet pioneers [6].
Today, a backbone router runs millions of lines of source
code, and a plethora of features in software and hardware.

Transport networks are similar. While traditionally they
have had a separation between a circuit switched data plane
and a packet switched control plane, this control could reside
within the box (Fig. 1b) or outside the box with proprietary
interfaces (Fig. 1c). Additionally, out-of-box-control may not
even be a distributed control plane, but more likely an Element
Management System (EMS) / Network Management System
(NMS) hierarchy. Those that desire the former are headed
towards the same problems seen in packet switched networks
today.

OpenFlow advocates a clean separation between the data
plane and the control plane in packet or circuit networks (Fig.
2). Because the data plane is typically implemented in
hardware, OpenFlow provides the control plane with a
common hardware abstraction. A network (for example an
autonomous system) is managed by a network-wide operating
system (e.g. NOX [7]), running on multiple software
controllers (Fig. 3), that controls the data plane using the
OpenFlow protocol.

OpenFlow abstracts each data plane switch as a flow-table.
The control plane makes decisions as to how each flow is
forwarded (reactively as new flows start, or proactively in
advance), then caches its decision in the data plane’s flow
tables. For example, the control plane might decide to route all
of the http traffic destined to Europe along the same path, and
so would add a flow-entry in the flow-table of each switch
along the path. OpenFlow allows various types of actions on
flows (e.g. forward, multicast, drop, tunnel), as outlined in the
current specification [8]. The network-wide operating system
decides how every flow is routed, which ones are admitted,
where they are replicated, and (optionally) the data-rate they
receive. And so now the control plane determines access
control, routing, multicast, load-balancing and so on. Moving
the decision making out of the data plane means the data plane
is oblivious to how, say, routing decisions are made, and a
new routing protocol can be added in software. We say that
the network is now “software-defined”.

The consequences are quite far-reaching. By providing a
standardized open interface to the data plane, innovation can
take place at a much faster pace than today. Network owners
and operators (as well as vendors, researchers and 3rd party
developers) can all add new functionality and services to the
network. New functionality and services are added by creating
network services on the network operating system or the
controller using another standardized API (Fig 2). This helps
the network to evolve more rapidly (e.g. to try out new access
control methods, or to provide alternative mobility managers).
And it potentially paves the way to greater diversity of
solutions because of a much larger pool of developers.

An OpenFlow network is easy to virtualize. In [9] we

describe how an OpenFlow network can be “sliced” into
several independent and isolated networks, each with its own
controller. The slices can be used to try new versions of
features (evolution) or to try radically new architectures,
including new routing protocols, address formats and so on
(diversity).

A number of vendors have created prototype
implementations of OpenFlow on Ethernet switches, IP
routers, WiFi access points and a WiMAX basestation.
Stanford is deploying OpenFlow enabled networks in its CS
and EE buildings that support both production and
experimental traffic, and we are working with seven other
campuses to help deploy OpenFlow in their network too.

III. THE FLOW ABSTRACTION
OpenFlow abstracts the data plane as a flow-table. A flow

can be defined as any combination of L2, L3 and L4 packet
headers as well as L1/L0 circuit flows (Fig. 4).

Fig. 1. Different architectures in today’s packet and circuit networks

Fig. 2. OpenFlow Network Architecture.

Fig. 3. Control Plane Architectures

3

Incoming packets are matched against the flow definitions;

if there is a match, a set of actions are performed, and statistics
kept. Packets that don’t match any flow entry are (typically)
encapsulated and sent to the controller. The controller can
decide how to process the packet, and then (optionally) cache
its decision in the data plane so future packets in the flow are
processed the same way. Thus while each packet is switched
individually, the flow is the basic unit of manipulation within
the switch. A management application or a provider could also
proactively create a set of flow table entries, in anticipation of
some traffic flows, in order to avoid setup delays. OpenFlow is
backward compatible with legacy networks; an OpenFlow
packet switch could behave as an Ethernet switch, IP router or
standalone L4 firewall by defining flows with their respective
headers. OpenFlow can be deployed in existing networks,
allowing service providers to gradually gain confidence in it.
In fact on the same OpenFlow network, a network operator
can support standard Ethernet and IP production traffic as well
as experimental flows that are defined as combinations of
packet headers at different layers.

In [10] we showed that cross-connect tables in transport
NEs can also be regarded as OpenFlow flow tables. Flows can
be defined as circuit flows using L1 time-slot switching based
on SONET/SDH and Virtual Concatenation (VCGs) or L0
wavelength or fiber switching. Likewise, they could be
defined across packet and circuit layers as well. Thus the
OpenFlow architecture allows for 1) a flexible definition of
what constitutes a flow, at what layer and switching
granularity, and 2) the definition can be changed dynamically,
over time or in different parts of the network; for example, to
aggregate flows as they move from the edge to the core of the
Internet.

IV. 4BOPENFLOW UNIFIED ARCHITECTURE
In this section we describe how the OpenFlow architecture

can unify packet and circuit networks in different network
planes.

A. 8BData Plane Unification
Once we consider the flow abstraction across various

underlying switching technologies – both packet (L2/L3/L4)
and circuit (L1/L0) – we effectively blur the distinction
between packets and circuits and regard them both simply as
flows of different granularity in a flow-switched network.

Fig. 5 shows two OpenFlow switches: an OpenFlow packet
switch on the left, and on the right, a transport NE that
supports both packet and circuit interfaces and switch fabrics.

We do not show the controller here but assume that the
switches speak the OpenFlow protocol with the controller. The
switches also maintain flow tables in hardware – Rule, Action,
Statistics (R, A, S) flow-table entries for the packet switching
fabrics, and bidirectional cross-connect entries (IN-OUT) with
associated actions for the circuit switching fabric. While this
example shows a time-slot based TDM digital cross-connect,
the concept applies equally well to wavelength based WDM
optical cross-connects (ROADMs & OXCs).

The packet switch identifies two separate flows via a) a
destination IP address (11.12.0.0) and b) http traffic (TCP port
80) destined for another IP address (11.13.0.0). The Action
applied to packets belonging to the flows is to add separate
VLAN tags to the two flows (ids 2 and 7) and forward the
packets out of ports 1 and 2 respectively, both of which are
connected to the packet interfaces of the NE. In the latter, the
packets from the two flows match on flow entries defined on
the VLAN tags. The Action applied here is to forward out of
different virtual ports, VCGs 3 and 5, together with the
designated encapsulation/adaptation specified in the flow
action (not shown).

On the circuit side of the NE, VCG-3 has a collective
bandwidth of 450 Mbps. This is represented by flow entries
comprised of the virtual concatenation of 3 TDM signals (VC-
4s) together with their physical ports and starting time-slots.
On the other hand, VCG-5 cross-connects to a single 10 Gbps
STS-192 signal out of port3 on the first time-slot. Thus, with
the flow abstraction, the OpenFlow controller can flexibly
define flows and assign different bandwidths and routes to
those flows, simply by the addition of flow table entries in
switches with different switching technologies and belonging
to different switching layers, thereby leading to datapath
unification. Furthermore, by not requiring the switches to host
complex distributed control plane functionality, the switches
benefit from increased robustness and decreased cost while
being able to accommodate and benefit from different
switching technologies, both packet and circuit, where
appropriate.

Fig. 4. OpenFlow Switch Flow Table Entry

Fig. 5. OpenFlow Datapath Unification

4

B. 9BControl Plane Unification
In Fig. 1, we had shown the significant disparity that exists

in IP and Transport network control frameworks. Such
disparity makes automated interworking between packet and
circuit networks hard, if not impossible. The functions of
routing, signaling and recovery across multiple layers and
different architectures become significantly complex, so much
so, that it is actually preferred to keep the networks separate
and operated independently by different divisions, even within
the same service provider organization. However, with
OpenFlow, a single framework can be used to control any
combination of OpenFlow enabled packet switches, circuit
switches, as well as switches which have both packet and
circuit interfaces and switch-fabrics (Fig. 6). Here’s how –

1) By introducing the separation of data and control in the
packet network together with the treatment of packets as
flows, the single framework in Fig.6 becomes possible as
opposed to the ones in Fig. 1, and 2) the OpenFlow protocol
[8] has features for both circuit and packet switching
hardware. It thereby allows the use of a single, standardized
protocol for controlling the underlying heterogeneous
hardware infrastructure, by the same controller. Another
advantage of standardizing the interface is that the same
controller can now be used to interface with many more
switches, irrespective of the switching type and completely
agnostic to the switch vendor. This has the direct effect of
eliminating islands of vendor equipment (known as vendor
domains in transport networks) that do not interoperate with
other islands without manual control, and only speak to
proprietary management systems.

It is also worth noting that such a unified control plane is
greatly simplified compared to a fully distributed control plane
such as in IP/MPLS and GMPLS networks. With a fully-
distributed control plane in TE networks, link-state routing
protocols disseminate link state information as well as
resource availability information. This is required in such
cases as each switch could make routing decisions and thus
needs all the state information in the network. In multi-layer,
multi-vendor-domain scenarios, distributed signaling becomes
complex when going across packet and circuit networks, while
the increased load on fragile link-state distributed routing
protocols could result in increased network instability.

But in OpenFlow, only the controller makes these decisions,
the information for which is gleaned via the OpenFlow
protocol directly from the switches. Thus by eliminating
distributed signaling and distributed routing protocols within a
controllers domain, the unified architecture benefits from a
simple, robust, unified, automated control plane without
layers and layers of complex fragile protocols.

Furthermore, when large packet and circuit network are
planned, operated and managed independently, several
management issues come up – careful planning and co-
ordination has to take place between the groups that
independently manage the networks, to ensure that something
unexpected (like failures) or known activities (like
maintenance) in one network does not effect the performance
of the other. Expectedly, operating two networks and
maintaining two groups that use completely different tools for
managing the networks (SNMP for IP and TL-1 based
proprietary NMS/OSS in Transport), result in considerable
opex burden. We believe that this separation of management
planes is a key hindrance to tighter integration of IP and
Transport networks. However OpenFlow could help in this
regard, as 1) the OpenFlow controller maintains a one-to-one
relationship with each switch within its domain just like
management systems in IP and Transport network do and 2)
the OpenFlow protocol has features which allow the controller
to perform management functions such as configure switches,
query statistics, receive alarms, monitor performance etc.

C. Virtualization Plane Unification
A key component of the OpenFlow architecture is the flow

level virtualization of the network and its resources.
Virtualization has two key ingredients – programmability and
isolation. The former is provided by the OpenFlow API itself,
where clients can program the switches by flexibly defining
flows according to their needs and inserting them into the flow
tables. The latter is provided in the OpenFlow architecture by
virtualizing the API itself with a thin layer of software which
we call the FlowVisor.
 The FlowVisor [9] is housed outside the switch leaving
both the data plane as well as the controllers unmodified. The
FlowVisor is transparent to the switches as well as the
controllers and it enforces traffic isolation by monitoring and
re-writing OpenFlow protocol messages. The switches think
that they are talking to a single controller, while each
controller thinks that it is controlling its own set of switches.

With the power of virtualization, OpenFlow can take into
account key needs of the service provider – Transport network
operators like to have precise manual control over the way
traffic is routed over their network rather than give up that
control to a software control plane irrespective of how
intelligent that control plane may be. While they would like to
respond faster and provide more dynamic services to meet
their client needs, they feel that the resources they manage are
too expensive, too valuable, and can cause far too much
damage or loss of revenue if handled incorrectly.

Fig. 6. OpenFlow Unified Architecture

5

 OpenFlow solves this problem by partitioning the network
resources between multiple clients and isolating them, thereby
ensuring that no client can intentionally or unintentionally
disrupt service for any other client. The key is that in the
unified architecture, OpenFlow enabled virtualization allows
the transport service provider to retain control over the
transport network, while allowing clients (such as an ISP) to
use whatever automated intelligent control algorithms they
may desire in their isolated slice of the network (Fig. 7).

We can further visualize that the client network (the ISP)
can have its own virtualized network via a FlowVisor which is
under the control of the ISP. The transport network resources
provided to the ISP by the transport service provider can
further be virtualized by the ISP for its own needs. Note that
both FlowVisor’s are capable of virtualizing either packet or
circuit resources, or both. For example, under one
construction, the transport service provider could virtualize
just the circuit resources, while the ISP could virtualize both
its own packet resources as well as the circuit ones it gets in its
slice of the transport network– the OpenFlow architecture
thereby allows for a hierarchy of FlowVisors.

V. 5BPROTOTYPE NETWORK AND DEMONSTRATION
The key purpose of the OpenFlow architecture is to enable

innovations and this paper shows how OpenFlow can enable
innovations at the intersection of packet and circuit networks.
We first describe an OpenFlow unified packet and circuit
network testbed that we are building in our lab. We also
present a couple of examples of new capabilities that are made
much easier with OpenFlow.

Prototype Network: The packet switches in our lab testbed
are based on the NetFPGA platform [11], a programmable
hardware platform that allows us to build new packet
switching capabilities in hardware. These packet switches are
interconnected via transport NEs and tens of kilometers of
optical fiber, thereby emulating a wide-area network. The NEs
comprise of line-terminating WDM equipment (transceivers
and optical mux/demux) as well as switching elements (cross-
connects) with different switching technologies - optical
wavelength switches, and modular electronic switches with
packet and TDM switching fabrics. All the switches (packet

and circuit) have the OpenFlow feature built in and are under
the control of a single controller running NOX [7]. Finally
hosts are connected to the packet interfaces and traffic is
transmitted end-to-end in the testbed under the control of
network control and management applications running on the
controller.

Example Application – Variable Bandwidth Packet Links:
Today’s IP networks have static link costs, where “costs” here
refers to the weightage assigned to a link as part of a shortest-
path computation. However IP traffic is quite dynamic with
constantly changing demand that frequently results in
congestion on links along certain routes in the network, while
other routes remain underutilized. Congestion could be
alleviated if routers could dynamically change link costs and
trigger re-computation of Shortest Path Trees (SPT), with the
net result that some flows take other routes to their destination
and thereby relieve load on the congested link. However, re-
computation of the SPT needs to happen in every single router
within the routing domain, which is potentially disruptive to
all the flows in the network. Furthermore, there exists the
possibility of routing loops while the routers converge, and
more importantly, route flaps, where the SPT re-calculation
and subsequent re-routing causes congestion somewhere else
in the network, which in-turn causes another SPT computation
and traffic ends up oscillating between paths. Avoiding
network oscillations is the fundamental reason why IGP link
metrics have static costs today as oscillations are far more
undesirable than poor traffic load efficiency.

However, in the OpenFlow unified architecture, long-lived
network congestion can be alleviated by simply increasing the
bandwidth along a packet link when needed, via dynamic
circuit switching. In our testbed, we will create packet link
congestion by dialing up the traffic between end-systems.
When this traffic overwhelms the packet link bandwidth
allocated by the underlying physical layer, the resultant
congestion in the packet link may result in the packet switch
output queues to overflow. When the queue length crosses a
pre-determined threshold set beforehand by the controller, the
switch asynchronously notifies the controller of the
congestion. A simple congestion control software application
running on top of the NOX controller (see Fig. 2) could then
decide to temporarily turn ‘on’ spare interfaces on the packet
switches, establish new circuit flows between them on the
NEs, and re-direct some of the packet flows causing
congestion (using L3 or L4 hashes) onto the spare interfaces,
thereby relieving congestion. Later the circuit resources could
be re-directed by the application elsewhere, allowing them to
be shared amongst several packet switches. Developing such
applications is made easy by NOX and the two APIs.

Importantly, in sharp contrast to today’s IP networks, none
of these changes are disruptive to existing packet flows
elsewhere in the network. Since the switches don’t run a
distributed routing protocol, there is no need for convergence
and no possibility for route flaps. The controller makes the
decision of changing a link bandwidth, and it only affects the

Fig. 7. OpenFlow Virtualization via FlowVisor

6

flows along the link and nowhere else. Variable bandwidth
packet links could allow service providers to run their links at
higher utilization and buttress bandwidth when needed, instead
of over-provisioning the network (4X to 10X) in order to
provide customer satisfaction in the face of uncertainty (traffic
surges, link failures etc.).

Example Application –Dynamic Automated Optical Bypass:
In some situations, the service provider could establish new
links between packet switches, where one did not exist before,
via the dynamic circuits in the underlying layer. Again this is
highly undesirable (and not done) in today’s IP networks
because such links would have to show up in the IP topology,
leading to the need for re-convergence. Dynamically setting
up and tearing down new links in the IP topology could lead to
the same problems as changing link costs. But as before,
OpenFlow does not suffer from these drawbacks and could
easily accomplish this task as a means of traffic engineering
triggered by a TE application running on the controller, or be
manually driven by the network operator. For example, if
many of the flows through intermediate packet switches are
transit flows, the TE application could recognize that, and
create the new circuit dynamically between the end packet
switches by bypassing the intermediate packet switches,
thereby reducing their load as well as overall flow latency. We
are prototyping these capabilities on our testbed and will
demonstrate them over the next year.

VI. 6BGMPLS FAILINGS
Generalized Multi-Protocol Label Switching (GMPLS) was

designed as an extension to MPLS and was intended to offer
an intelligent and automated unified control plane (UCP) for a
variety of networking technologies – both packet and circuit.
GMPLS has undergone a lengthy standardization process
within the IETF (since 2000) and variations of the protocol
suite have also gone through standardization at the ITU and
the OIF. However, as of this writing, while GMPLS has
existed in some form or another for the entire decade, it has
yet to see a significant deployment in commercial networks.

GMPLS protocols could be used as a control plane for
transport networks, but it seems overly complex and fragile to
make sense as a UCP. First, it assumes an underlying, existing
IP/MPLS network for control traffic (with a link-state
routing). Second, and for us most importantly, GMPLS misses
the opportunity to introduce a path for continued evolution of
the UCP. Understandably, in its first incarnation, there are
many issues GMPLS does not address well (for example, the
conservative way in which network operators manage and
partition their networks). By defining how “everything” works
up-front in a homogeneous protocol suite, GMPLS leaves little
room for innovation to take place in the field, by the network
operators. Whether or not OpenFlow is the “right” answer, we
do believe that it is important for a UCP to be easily
virtualized, so that the network control layer can be sliced to
allow continued evolution as experience is gained in the field.

VII. 7BCONCLUSION
In this paper we describe how OpenFlow could be used to

unify (and continually improve) the control of packet and
circuit networks. We are prototyping OpenFlow on circuit and
packet platforms in collaboration with vendors and plan to
demonstrate new dynamic circuit switching capabilities that
the packet networks can exploit for congestion avoidance and
agile traffic engineering. But ours is a small effort, and will
only scratch the surface with a handful of examples to show
how a UCP can bring together both types of network. We
believe there are many other improvements to be made by
other researchers.

REFERENCES
[1] "Recommendation I.150, B-ISDN Asynchronous Transfer Mode

Functional Characteristics", ITU.
[2] http://www.cisco.com/en/US/solutions/ns341/ns525/ns537/ipodwdm_an

nouncement.html
[3] E. Mannie, “Generalized Multi-Protocol Label Switching Architecture”,

RFC3945
[4] OIF-UNI-2.0, http://www.oiforum.com/public/impagreements.html
[5] N. McKeown, et. al., “OpenFlow: Enabling Innovation in Campus

Networks”, SIGCOMM CCR, Vol. 38, Issue 2, March 2008
[6] J.H. Saltzer, D.P. Reed, D.D. Clark, “End-to-end arguments in system

design”, Conference on Distributed Computing Systems, April 1981.
[7] N. Gude, et. al., “ NOX: Towards an Operating System for Networks”,

SIGCOMM CCReview , Vol. 38, Issue 3, July 2008
[8] OpenFlow Switch Specification v0.9, http://www.openflowswitch.org/
[9] R. Sherwood, et. al., “Carving Research Slices Out of Your Production

Networks with OpenFlow”, SIGCOMM 2009 Demo, September 2009
[10] S. Das, G. Parulkar, N. McKeown, “Simple Unified Control for Packet

and Circuit Networks”, IEEE Photonics Society Summer Topical on
Future Global Networks, July 2009.

[11] NetFPGA website, http://www.netfpga.org

APPENDIX A
 As a proof of concept, we built a simple OpenFlow enabled
packet and circuit network using carrier-class Ciena
CoreDirector CI (CD) switches, and an application that sets
up, modifies and tears-down L1/L2 flows on–demand and
dynamically responds to network congestion. We
demonstrated the network and application at SC09. Other
network applications that can exploit the common API and
OpenFlow enabled packet and circuit switches include
integrated routing and traffic engineering, integrated network
recovery, QoS, virtualization and more. In this section we
report on our proof of concept network, application, and the
SC09 demonstration.
 The demonstration network was housed in three exhibit
booths as shown in Fig. 8a. Each booth hosted a single CD
supporting both layer 2 (GE) interfaces with a packet
switching fabric, as well as layer 1 (SONET/SDH) interfaces
with a TDM switching fabric. The CDs natively support the
OpenFlow protocol for their packet and circuit switching
fabrics, and are thereby controlled by an external controller,
running NOX [7] as the network OS, over an out-of-band
Ethernet network. Video clients and servers were connected to
the GE client interfaces of the CDs, which were themselves

http://www.cisco.com/en/US/solutions/ns341/ns525/ns537/ipodwdm_announcement.html
http://www.cisco.com/en/US/solutions/ns341/ns525/ns537/ipodwdm_announcement.html
http://www.oiforum.com/public/impagreements.html
http://www.openflowswitch.org/
http://www.netfpga.org/

7

connected via OC-48 SONET/SDH links. The three CDs
together form a small demo network, emulating a real scenario
in the Internet today – end user clients requesting services
(web, e-mail, video etc.) from remote servers, with the
requests going out as IP/Ethernet packets, encountering packet
switches such as Ethernet switches and IP routers, before
getting bundled into circuits for transport over the long-haul.

 At the start of the demonstration, the CDs establish
connectivity with the OpenFlow controller. The controller
identifies the switches and their features through the
OpenFlow interface and builds a switch/topology database. It
then pre-provisions a SONET/SDH Virtual Concatenation
Group (VCG) in the CDs which have GE interfaces. The
VCGs serve as virtual ports interfacing Ethernet packet flows
and SONET/SDH circuit flows. After this initial startup phase,
one of the video clients makes a request for a video from a
remote streaming video server. The request is initially
redirected to the OpenFlow controller, which responds by
directing CDs #1 and #2 to create an internal VLAN
corresponding to the client port (in CD #1) and the video
server port (in CD #2), and map the VLAN into the VCG
virtual ports. The controller then provisions SONET signals
and maps them into the same VCG, thereby enabling the
packet flow to be transported over the circuit. All subsequent

packets (in both directions) for this client-server pair match
the existing flow definitions and get directly forwarded in
hardware. As video data is received from the server, the
packets are tagged with the internal VLAN id and mapped to
the VCG. At the client side, the packets received from the
VCG are switched to the client port based on the VLAN tag,
which is then stripped off before the packets are forwarded to
the client PCs, where the video is displayed on the screen. A
GUI (shown in Fig. 9) was created that shows network state in
real-time. Packet flows are shown in red and circuit flows in
blue.
 Initially, the cumulative data-rate of two video streams is
less that the bandwidth of the STS-1(50Mbps) circuit flow
they are multiplexed into (Fig. 9a), and the videos play
smoothly on the client PC displays. However, when a third
video stream is multiplexed into the same circuit, the
bandwidth is exceeded, packets start getting dropped,
congestion develops in the network and the video displays
stall (Fig. 9b). However the congestion-control app running in
the controller monitors network performance by acquiring
switch port and flow statistics. It becomes aware of the packet
drops, makes sure that the congestion is due to long-lived
flows, and then responds by increasing the circuit bandwidth
from 50 to 200 Mbps. It achieves this by adding more TDM
signals to the VCG, thereby relieving congestion and restoring
the video streams which start displaying smoothly again (Fig.
9c).

Fig. 8(a) Demonstration Network at SC09

Fig. 8(b) Demo setup at Ciena booth

(a)

(b)

8

Fig. 9. OpenFlow GUI displaying real-time network state

 Thus far, everything has happened with automated control
without requiring any manual intervention. However at this
point, if the network operator desires (for reasons such as load
balancing, path diversity etc.), he can override the decision
made by the app, by redirecting the individual circuit flows
that make up the VCG along different paths in the network.
This can be done by simply using a mouse to drag a circuit
flow in the GUI from one path to another. Behind the scenes,
the GUI interfaces with the controller and informs the app of
the flow-drag. The latter assigns free time-slots along the new
path and sends the appropriate commands to the switches, in
essence performing a make-before-break operation (Fig. 4d)
which is hitless to the video streams being transported, due to
the use of SONET LCAS (Link Capacity Adjustment Scheme)
technology. Finally, to end the demo, the app detects the end
of the video streams and gracefully tears down the packet and
circuit flows.

APPENDIX B
We have also demonstrated OpenFlow unified control in our
lab testbed (Figs 10a & 10b) with the help of OpenFlow
enabled packet switches based on the NetFPGA platform, and
an OpenFlow enabled optical switch based on a Wavelength
Selective Switch (WSS) granted by Fujitsu.
 The NetFPGA is a programmable hardware platform that
allows researchers to implement electronic packet switching
functionality in hardware. It is a PCI card that consists of a

Xilinx FPGA and 4 GE ports, and can be easily installed in
any PCI slot in a host computer (Fig. 10c). The FPGA can be
programmed to behave as a simple Ethernet switch or an IP
router that switches packets between the 4 GE ports. But more
importantly, it allows building new packet processing
functionality in hardware, so networking researchers can try
out their ideas and not be limited to functionality provided in
commercial packet switching equipment. In our testbed, an
OpenFlow packet switch is implemented in the NetFPGA,
which switches flows defined on a subset of the 10-tuple
shown in Fig. 4. The flow definition is inserted in the switch’s
hardware flow table, by the controller via the OpenFlow
protocol [8].

 The WSS is an all-optical lambda switch in a 1X9
configuration. It has the ability to independently switch any of
40 incoming wavelengths at the single input port, to any of the
9 output ports (Fig 10d). The incoming wavelengths (100 GHz
spaced ITU DWDM lambdas) are demultiplexed and directed
to their respective MEMS mirrors, which can be rotated to
direct their wavelength to any of the 9 output ports, where they
are multiplexed back into the outgoing fiber. In our setup we
used the WSS bi-directionally, such that one of the 9 output

(c)

(d)

Fig. 10(a) Testbed and components

Fig. 10(b) Schematic of the testbed

9

ports actually served as an input port for a certain wavelength
(λ2). The mirrors are controlled with a voltage driver which is
sent commands over RS232 from a PC. In turn the PC
interacts with the OpenFlow controller which directs the
provisioning of cross-connections via the circuit switching
features of the OpenFlow protocol [8]. Together the PC, driver
and the WSS can be regarded as an OpenFlow enabled circuit
switch.

 One of the four GE ports on each packet switch was
connected to an electrical-to-optical converter from TrendNet
(GE to SFP). We used DWDM SFP 2.5 Gbps transceiver
modules in the converter which transmitted wavelengths of
1553.3 nm and 1554.1 nm respectively. These wavelengths
traveling in opposite directions were multiplexed at the
output/input of the first packet switch (NF1) by an AWG,
transported through 25 kms of SM fiber, and then
demultiplexed by the WSS before the input/output of the
second packet switch (NF2). Together the OpenFlow packet
and circuit switches form the underlying switching hardware
that switch at different granularities (packet and lambda) and
are controlled by an external unified control plane (compare
Figs. 6 and 10b).
 We connected client and video server PCs (end-hosts) to the
packet switches via GE, and used Helix DNA as the video
streaming server and Real Player as the client application. A
video request is made by the client application to the client

PC’s TCP/IP stack (in the host OS), by providing the server’s
IP address, the L4 port it is listening on, as well as the video
filename. The client OS initially does not have knowledge of
the MAC address corresponding to the server’s IP. It therefore
generates an ARP request which is received by NF1 and is
processed as the first packet of a new flow. Since the packet
doesn’t match any flow entries in NF1, it gets forwarded to the
OpenFlow controller. The controller makes the decision to
create the circuit by using the OpenFlow protocol to make the
bidirectional wavelength cross-connection in the WSS,
thereby bringing up the Ethernet link between NF1 and NF2.
It then inserts flow table entries in the latter, to broadcast the
ARP request to all interfaces other than the one which
received the packet. This results in the ARP request reaching
the server PC via the WSS and NF2. The server PC’s OS
sends the ARP reply, following which TCP handshaking takes
place and a L4 connection is created, over which the video
request is made. Finally, the server streams the video data
packets over UDP, which are transported over the same
bidirectional circuit created by the controller, and are received
and displayed by the client.
 We plan to continue development of the protocol, addition
of OpenFlow to carrier class packet and circuit switches, and
development of new network applications that can exploit the
new capabilities.

Fig. 10(c) NetFPGA platform

Fig. 10(d) Schematic of Wavelength Selective Switch

	openflow-tr-2009-4-unification
	coverpage
	OpenFlow_TR_2009_4.pdf
	Introduction
	Openflow architecture
	The Flow Abstraction
	4BOpenFlow Unified Architecture
	8BData Plane Unification
	9BControl Plane Unification
	Virtualization Plane Unification

	5BPrototype Network and Demonstration
	6BGMPLS Failings
	7BConclusion
	References
	Appendix

	OpenFlow_TR_2009_4
	Introduction
	Openflow architecture
	The Flow Abstraction
	4BOpenFlow Unified Architecture
	8BData Plane Unification
	9BControl Plane Unification
	Virtualization Plane Unification

	5BPrototype Network and Demonstration
	6BGMPLS Failings
	7BConclusion
	References
	Appendix A
	Appendix B

